Abstract Submitted for the DPP17 Meeting of The American Physical Society

Sorting Category: 6.14 (T)

Gyrokinetic Magnetohydrodynamics and the Associated Equilibrium W. W. LEE, S. R. HUDSON, C. H. MA, Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ — A proposed scheme for the calculations of gyrokinetic MHD and its associated equilibrium is discussed related a recent paper on the subject [1]. The scheme is based on the time-dependent gyrokinetic vorticity equation and parallel Ohm's law, as well as the associated gyrokinetic Ampere's law. This set of equations, in terms of the electrostatic potential, ϕ , and the vector potential, \mathbf{A} , supports both perpendicular and parallel pressure gradients and their associated currents. The MHD equilibrium can be reached when $\phi \to 0$ and \mathbf{A} becomes constant in time, which, in turn gives $\nabla \cdot (\mathbf{J}_{\parallel} + \mathbf{J}_{\perp}) = 0$ and the associated magnetic islands. [1] W. W. Lee, "Magnetohydrodynamics for collisionless plasmas from the gyrokinetic perspective," Phys. Plasmas 23, 070705 (2016).

¹The present work is partially supported by US DoE grant DE-AC02-09CH11466.

Abstract	Limit
Prefer Oral Session X Prefer Poster Session	W. W. Lee wwlee@pppl.gov Princeton Plasma Physics Laboratory
Date submitted: 21 Aug 2017	Electronic form version 1.4

1 of 1 8/21/17, 1:43 PM